

1. 概述

HAL280 集成霍尔传感器输出驱动电路,主要应用于无刷直流电机的电转换。此款 IC 集成了霍尔传感器、运算放大器、比较器和一对互补的集成了上拉电阻的漏极输出(DO, DOB)等。当磁通量密度(B)大于操作点(BOP),DO 就会开启(低电平),同时 DOB 会关闭(高电平)。两个输出管脚的状态会一直保持到 B 低于释放点(BRP),这时 DO、DOB 改变各自的输出状态。

对于直流风扇的应用,有时会发生电源反接的情况。内部二极管只能给芯片提供保护而不能给线圈提供保护。所以应用的时候,有必要附加一个外部的二极管,它在电源反接的时候给线圈提供保护。

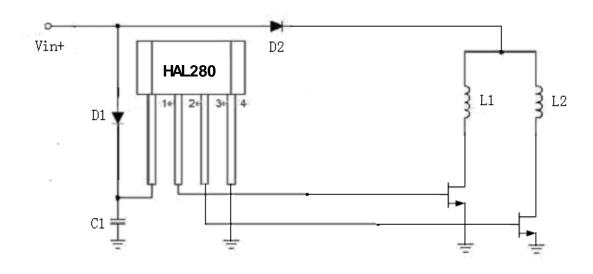
1

2. 特点

- ◆ 单芯片集成霍尔传感器和输出上拉电阻
- ◆ 操作电压范围: 3.2~20V
- ◆ 内建阻转保护和自启动电路
- ◆ 封装: TO-94

3. 应用范围

- ◆ 直流无刷风扇
- ◆ 直流无刷马达


4. 器件外观及管脚描述

序号	管脚名称	描述
1	VDD	电源
2	DO	输出
3	DOB	输出
4	GND	地

5. 典型应用电路

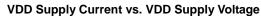
注:该芯片在应用中请注意在输出到地端加 1uF~10uF 的电容,以使系统更加稳定。

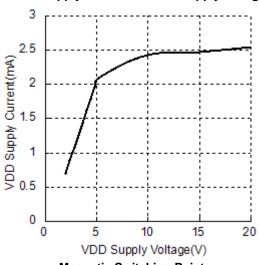
6. 极限参数

参数	参数值	単位
电源电压 (V _{CC})	24	V
连续电流	200	mA
峰值电流	300	mA
功耗	400	mw
工作温度范围	-40 ~ 100	${\mathbb C}$
储存温度范围	-65 ~ 150	$^{\circ}$

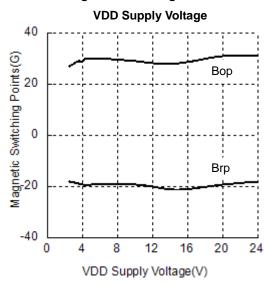
7. 电学特性

参数	符号	测试条件	最小值	典型值	最大值	单位
电源电压	V_{DD}		3.2		20	V
上拉电阻	RL		20		25	ΚΩ
输出 CE 电压	V_{OUT}	I _L =100mA		0.3	0.4	V
消耗电流	I _{DD}			2	4	mA
阻转开启时间	TLA _{ON}			250		ms
阻转关闭时间	TLA _{OFF}			5		s

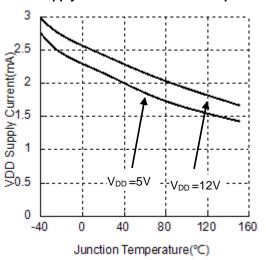


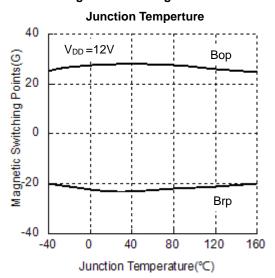

8. 磁场特性

 $T_A = 25^{\circ}C$, $V_{DD} = 12V$

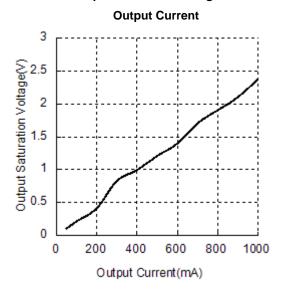

参数	符号	最小值	典型值	最大值	单位
工作点	Вор	10		60	Gauss
释放点	BRP	-60		-10	Gauss
磁滞	Вну		60		Gauss

9. 性能特性

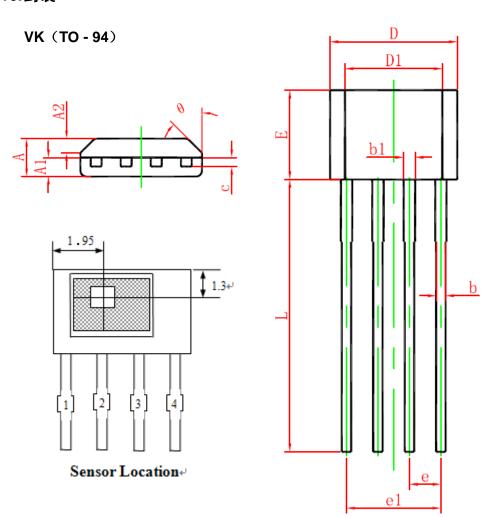



Magnetic Switching Points vs.

VDD Supply Current vs. Junction Temperature



Magnetic Switching Points vs.



Output Saturation Voltage vs.

10.封装

Symbol	Dimensions	In Millimeters	Dimensions In Inches		
	Min.	Max.	Min.	Max.	
Α	1.400	1.800	0.055	0.071	
A1	0.700	0.900	0.028	0.035	
A2	0.500	0.700	0.020	0.028	
b	0.360	0.500	0.014	0.020	
b1	0.380	0.550	0.015	0.022	
С	0.360	0.510	0.014	0.020	
D	4.980	5.280	0.196	0.208	
D1	3.780	4.080	0.149	0.161	
E	3.450	3.750	0.136	0.148	
е	1.270 TYP.		0.050 TYP.		
e1	3.710	3.910	0.146	0.154	
L	14.900	15.300	0.587	0.602	
θ	45° TYP.		45° TYP.		